
Hunting malware with
Volatility v2.0Volatility v2.0

Frank Boldewin

CAST Forum

December 2011

(English edition)

What is Volatility?

� Forensics framework to acquire digital
artifacts from memory dumps

� Completely written in Python

� Current stable version is 2.0.1

2

� Current stable version is 2.0.1

� Easy to use plugin interface

� Supports the following x86 Windows versions
� Windows XP SP 2, 3

� Windows 2003 Server SP 0, 1, 2

� Windows Vista SP 0, 1, 2

� Windows 2008 Server SP 1, 2

� Windows 7 SP 0, 1

How does Volatility work?

� Volatility versions <=1.3 only supported
Windows XP and searched for hardcoded
values, e.g. to detect the Kernel Processor
Control Region (KPCR)

� Starting with version 2.0 advanced scanning

3

� Starting with version 2.0 advanced scanning
techniques are being used to detect the KPCR

If KPCR.baseaddr == *(baseaddr +10)

Then Start_Sanity_checks()

or _DBGKD_DEBUG_DATA_HEADER64 Scan

� For details on these scanning techniques
read the following articles
http://blog.schatzforensic.com.au/2010/07/finding-object-roots-in-vista-kpcr/

http://gleeda.blogspot.com/2010/12/identifying-memory-images.html

How does Volatility work?

� After detecting the right Windows version and its KPCR,
volatility scans for dozens of other structures inside a dump
file. Additional plugins like malware.py hunt for malicious
activities by using strong heuristics or comparing results
from different structures

� Typical structures being parsed are:

4

� Typical structures being parsed are:

� _EPROCESS und _KPROCESS

� _KTIMER

� _TCPT_OBJECT

� _ETHREAD und _KTHREAD

� _CMHIVE

� _LDR_DATA_TABLE_ENTRY

� _KMUTANT …..

Show active processes via _EPROCESS list parsing

5

Show running modules/libraries to processes via Process
Environment Block parsing

6

Hunting for the C&C server with the connscan feature via
_TCPT_OBJECT parsing

7

Virtual Address Descriptor (VAD)

� The VAD is a kernel data structure that
describes the allocated memory pages of a
process, e.g. loaded modules, mapped files
or private heap

� A very often used malware technique is to

8

� A very often used malware technique is to
inject its malicious code into
trusted/privileged processes, e.g.
Services.exe, Svchost.exe, Winlogon.exe

VAD parsing to find injected code with “malfind”

� Regular loaded libraries in the address space of a
process are of type _MMVAD or _MMVAD_LONG

� Dynamically allocated memory pages created via
VirtualAllocEx/WriteProcessMemory are of type
_MMVAD_SHORT

9

� If these memory pages additionally are marked as
PAGE_EXECUTE_READWRITE, this is a good indication
for the malfind feature to write this page to a dump
directory

� With the YARA library in combination further malware
indicators could be detected

Hunting for injected code inside trusted/privileged processes
and scan for typical malware pattern with YARA

10

PE-File fixing via impscan to have clean importnames inside
IDA Pro

11

View of named mutexes to identify typical malware pattern

12

Hunting for code hooks to detect manipulated system functions

13

Memory, disassembler and structures view via the interactive
shell

14

Registry Hives

� Table of standard hives and their supporting files

Registry hive Supporting files

HKEY_CURRENT_CONFIG System, System.alt, System.log, System.sav

15

HKEY_CURRENT_CONFIG System, System.alt, System.log, System.sav

HKEY_CURRENT_USER Ntuser.dat, Ntuser.dat.log

HKEY_LOCAL_MACHINE\SAM Sam, Sam.log, Sam.sav

HKEY_LOCAL_MACHINE\Security Security, Security.log, Security.sav

HKEY_LOCAL_MACHINE\Software Software, Software.log, Software.sav

HKEY_LOCAL_MACHINE\System System, System.alt, System.log, System.sav

HKEY_USERS\.DEFAULT Default, Default.log, Default.sav

Show registry hives of a system via _CMHIVE parsing, e.g.
…\config\system points to registered services on a windows
system

16

Show registry key that looks suspicious or was hidden through
API hooking on a live system

17

Interrupt Descriptor Table (IDT)

� The Interrupt Descriptor Table (IDT) is a structure
which is used when dispatching interrupts

� Interrupts can interrupt an execution of a program to
to handle an event

� Interrupts could be a result of a hardware signal or

18

� Interrupts could be a result of a hardware signal or
software based using the INT instruction

� The IDT descriptor table can handle 256 entries

� The descriptor to the table can be written with the
instruction LIDT and read with SIDT

Show IDT to detect manipulated interrupts

19

Show registered services (incl. hidden) and status via _SERVICE*
records

20

Comparing the results of function “modules” via
PsLoadedModuleList and function “driverscan” via
_DRIVER_OBJECT parsing. Driverscan shows the hidden driver

21

SSDT and Shadow SSDT

� The SSDT is a data array in kernel memory, that
stores pointers to the native API functions of
Windows, e.g. NtCreateFile, NtEnumerateKey

� These functions are handled in NTOSKRNL

� Some older rootkits hooked some distinctive

22

� Some older rootkits hooked some distinctive
functions to hide its files or registry entries when
queried from usermode

� Another data array is the Shadow SSDT, pointing to
native graphic and windows related functions,
handled in Win32k.sys

Finding manipulated SSDT und Shadow SSDT entries

23

Global Descriptor Table (GDT) and callgates

� The GDT is a table used in protected mode of a x86
CPU to manage memory, multitasking and different
callgates

� A callgate is a mechanism in Intel x86 arch to change
privilege level of the CPU

24

� Some rootkits install such callgates to execute code
with the highest privilege (Ring 0) from usermode
(Ring 3) without the need to have a driver, e.g. by
calling DeviceIOControl

� Callgate usage works by executing “call far ptr <addr>”

from usermode code

Show Global Descriptor Table to detect installed callgates

25

Kernel callback which is being called when a bugcheck occurs and
possibly a crashdump is being created, e.g. to clean up malicious
code pages

26

Kernel callback which is being called when a system is about to
shut down, e.g. to check if MBR is still properly infected

27

Kernel callback which is being called whenever a new module
(Kernel+Usermode) gets loaded, e.g. to inject usermode code
into the target process

28

Kernel callbacks to fake NTOSKRNL.EXE, which is being called
whenever a new module (Kernel+Usermode) gets loaded and a
new process is created

29

Kernel callback to get notified whenever a filesystem registers,
e.g. to attach to filesystems as filterdriver and control/intercept
IRP packets

30

Show device tree via _DEVICE_OBJECT parsing, e.g. to detect
unknown file devices

31

Hunting for orphan threads

� Drivers requiring delayed processing usually use a work
item, using IoQueueWorkItem with a pointer to its callback
routine

� When a system worker thread processes the queued item it
gets removed and the callback gets invoked

� System worker threads run in the system process context

32

� System worker threads run in the system process context
(PID 4)

� Whenever work items have been processed or other system
threads have been created this leaves traces on the
callstack

� Modern rootkits often map themself into the non paged
kernel pool, start this code as system thread and unload
the original driver. These system threads without an
existing driver entry can be detected with the Volatility
“OrphanThread” function

System Worker Threads parsing (SYSTEM process) to detect
orphan threads

33

Hunting for suspicious functions in kernel timers

� Kernel timer DPCs are being used to
schedule an execution of a function to a
particular time

� Some rootkits install timers, e.g. to start
C&C communication after an elapsed time or

34

C&C communication after an elapsed time or
to check if the system is currently being
traced or debugged

Show installed kernel timer routines and its owners via
_KTIMER parsing

35

Show driver IRPs to detect manipulated dispatcher functions
(Example: DriverStartIo hook)

36

Show driver IRPs to detect manipulated dispatcher functions
But where’s the hook?

37

Show driver IRPs including disassembly using the driverirp
function in combination with the –v parameter. This shows the
patched code and jump to the _KUSER_SHARED_DATA area

38

Conclusion

� Volatility is a very powerful tool, which is able
to detect even the most advanced rootkits if
it’s being used properly.

� The analyst should have good windows
knowledge to combine the different functions

39

knowledge to combine the different functions
in a smart way and draw the right conclusions

� False positives could be caused by security
software like HIPS, AV or personal firewalls,
as they act in a very similar way malware
does. The only way to be 100% sure if the
code is malicious or not the investigator has
to disassemble the dumped code resp. alerted
functions

Questions?

40

